diff mbox series

[bug#55241,3/4] gnu: Add r-smurf.

Message ID 20220503065311.9192-3-madalinionel.patrascu@mdc-berlin.de
State New
Headers show
Series [bug#55239,1/4] gnu: Add r-forestplot. | expand


Context Check Description
cbaines/comparison success View comparision
cbaines/git branch success View Git branch
cbaines/applying patch success View Laminar job
cbaines/issue success View issue

Commit Message

Mădălin Ionel Patrașcu May 3, 2022, 6:53 a.m. UTC
* gnu/packages/cran.scm (r-smurf): New variable.
 gnu/packages/cran.scm | 42 ++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 42 insertions(+)
diff mbox series


diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index 63e2b71cd3..099bfb8002 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -5907,6 +5907,48 @@  (define-public r-sm
 and density estimation")
     (license license:gpl2+)))
+(define-public r-smurf
+  (package
+    (name "r-smurf")
+    (version "1.1.2")
+    (source (origin
+              (method url-fetch)
+              (uri (cran-uri "smurf" version))
+              (sha256
+               (base32
+                "00q54pg42anilhcshhjvv277mkszbpzpkf1g7srs7cjd5skjvsaf"))))
+    (properties `((upstream-name . "smurf")))
+    (build-system r-build-system)
+    (propagated-inputs
+     (list r-catdata
+           r-glmnet
+           r-mass
+           r-matrix
+           r-mgcv
+           r-rcolorbrewer
+           r-rcpp
+           r-rcpparmadillo
+           r-speedglm))
+    (native-inputs (list r-knitr))
+    (home-page "https://gitlab.com/TReynkens/smurf")
+    (synopsis "Sparse multi-type regularized feature modeling")
+    (description
+     "The @code{smurf} package contains the implementation of the @dfn{Sparse
+Multi-type Regularized Feature} (SMuRF) modeling algorithm to fit
+@dfn{generalized linear models} (GLMs) with multiple types of predictors via
+regularized maximum likelihood.  Next to the fitting procedure, following
+functionality is available:
+@itemize @bullet
+Selection of the regularization tuning parameter lambda using three different
+approaches: in-sample, out-of-sample or using cross-validation.
+S3 methods to handle the fitted object including visualization of the coefficients
+and a model summary.
+@end itemize")
+    (license license:gpl2+)))
 (define-public r-venndiagram
     (name "r-venndiagram")